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Abstract

Background: Tumor-infiltrating immune cells have been linked to prognosis and response to immunotherapy;
however, the levels of distinct immune cell subsets and the signals that draw them into a tumor, such as the
expression of antigen presenting machinery genes, remain poorly characterized. Here, we employ a gene
expression-based computational method to profile the infiltration levels of 24 immune cell populations in
19 cancer types.

Results: We compare cancer types using an immune infiltration score and a T cell infiltration score and find
that clear cell renal cell carcinoma (ccRCC) is among the highest for both scores. Using immune infiltration
profiles as well as transcriptomic and proteomic datasets, we characterize three groups of ccRCC tumors: T
cell enriched, heterogeneously infiltrated, and non-infiltrated. We observe that the immunogenicity of ccRCC
tumors cannot be explained by mutation load or neo-antigen load, but is highly correlated with MHC class I
antigen presenting machinery expression (APM). We explore the prognostic value of distinct T cell subsets
and show in two cohorts that Th17 cells and CD8+ T/Treg ratio are associated with improved survival, whereas Th2
cells and Tregs are associated with negative outcomes. Investigation of the association of immune infiltration patterns
with the subclonal architecture of tumors shows that both APM and T cell levels are negatively associated with
subclone number.

Conclusions: Our analysis sheds light on the immune infiltration patterns of 19 human cancers and unravels mRNA
signatures with prognostic utility and immunotherapeutic biomarker potential in ccRCC.
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Background
Tumors are complex environments, composed of trans-
formed cells as well as stromal and immune infiltrates.
Tumor-infiltrating cells can demonstrate either tumor-
suppressive or tumor-promoting effects, depending on
the cancer type or the tumor model. For instance, regu-
latory T cells (Tregs) and tumor associated macrophages
(TAMs) have been associated with pro-tumor functions
[1–3], whereas CD8+ T cells have been associated with
improved clinical outcomes and response to immuno-
therapy [4–8]. Antitumor activity of antigen-specific
CD8+ T cells may underlie the efficacy of immune
checkpoint blockade therapy [9–11] as such CD8+ T
cells have been shown to increase in quantity and activity
after treatment with these drugs.
CD8+ T cells are activated by peptide antigens pre-

sented on major histocompatibility class I (MHC-I) mol-
ecules. A CD8+ T cell can proliferate when its T cell
receptor (TCR) recognizes antigens presented by MHC-I
on a target cell, leading to an antigen-specific immune
response that kills antigen-bearing cells [12]. All nucle-
ated cells express antigen presenting machinery (APM)
genes that code for MHC-I subunits and proteins neces-
sary to process antigens and load them onto MHC-I.
The APM genes can be upregulated by type II interferon
(IFNγ), which is secreted by activated CD8+ T cells and
other immune infiltrates. Upregulation of APM genes
can lead to a cytotoxic feed-forward loop: more antigen
presentation increases the number of T cells that find
their cognate antigens, which in turn increases IFNγ re-
lease, antigen presentation, and cytotoxicity. Yet identifi-
cation of CD8+ T cells alone is not sufficient to
characterize the cytotoxic potential of the complex
tumor microenvironment. The net inflammatory nature
of the tumor can better be understood by quantifying
the infiltration levels of diverse immune cell types.
Tumor immune infiltrates have largely been character-

ized by tissue-based approaches such as immunohisto-
chemistry (IHC) and flow cytometry. These approaches
are limited by a number of factors including the number
of cell types that can be assayed simultaneously and the
amount of tissue required. Computational techniques
applied to gene expression profiles of bulk tumors can
rapidly provide a broader perspective on the intratu-
moral immune landscape [13, 14]. Single sample gene
set enrichment analysis (ssGSEA) has previously been
successfully implemented to profile the overall immune
and stromal infiltration levels across multiple cancer
types [15]. Deconvolution methods such as CIBERSORT
[16] and DeconRNA-Seq [17] have also recently been
developed, but either have not yet been validated for
RNA sequencing (RNA-Seq) data or require reference
expression vectors for each individual tumor-infiltrating
immune cell population that are currently unavailable.

Clear cell renal cell carcinoma (ccRCC) has been
shown to be a highly immune-infiltrated tumor in mul-
tiple clinical and genomic studies [15, 18]. A recent
study found that cytolytic activity index (CYT), defined
as the geometric average of GZMA and PRF1 expres-
sion, was the highest in ccRCC when compared to 17
other human cancers [13]. The spontaneous regression
seen in up to 1% of ccRCC cases is also thought to be
largely immune-mediated [19]. Additionally, ccRCC was
historically one of the first malignancies to respond to
immunotherapy and continues to be among the most re-
sponsive [20–23]. However, the mechanisms underlying
high immune infiltration, spontaneous remissions, and
response to immunotherapy in this malignancy remain
poorly understood.
The success of immune checkpoint blockade in melan-

oma and non-small cell lung carcinoma (NSCLC) has
largely been attributed to the high mutation burden in
these tumors [10, 11]. A higher number of tumor muta-
tions is expected to result in greater numbers of MHC
binding neo-antigens, which have been proposed to drive
tumor immune-infiltration and response to immunother-
apy [9, 10, 13, 24–26]. However, the modest mutation load
of ccRCC compared with other immunotherapy-
responsive tumor types [27] challenges the notion that
neo-antigens alone can drive immune infiltration and re-
sponse to immunotherapy in these tumors.
As depicted in the workflow in Additional file 1:

Figure S1a, we employed 24 immune cell type-specific
gene signatures from Bindea et al. [14] (Additional file 1:
Figure S1b) to computationally infer the infiltration levels
in tumor samples (Step 1). We validated the gene signa-
tures and our inference methodology using a ccRCC co-
hort from our institution (Step 2). We then defined a T
cell infiltration score (TIS), an overall immune infiltration
score (IIS), and an APM score to highlight the immune re-
sponse differences between ccRCC [28] and 18 other
tumor types profiled by The Cancer Genome Atlas
(TCGA) research network (Step 3). Next, we characterized
the immune-infiltration patterns in ccRCC patients by
using the levels of 24 immune cells, angiogenesis, and
expression of immunotherapeutic targets such as PD-1,
PD-L1, and CTLA-4 (Step 4). We then interrogated the
impact of geographic intratumoral heterogeneity and
clonality on immune infiltration. Next, we investigated a
suite of mechanisms that could potentially drive tumor
immune-infiltration and explain the observed infiltration
patterns in ccRCC. We validated our findings in an inde-
pendent multi-platform ccRCC dataset [29] (Step 5).
Finally, in a small series of Nivolumab-treated patients, we
observed that our signatures correlate with response
to checkpoint blockade therapy in ccRCC (Step 6).
This integrative study utilizing rich whole-exome,
whole-transcriptome, proteomic, and clinical data
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substantially improves our understanding of the
tumor microenvironment in ccRCC and establishes an
approach that can easily be extended to other human
cancers.

Results
In silico decomposition of the tumor-immune
microenvironment
We quantified the relative tumor infiltration levels of 24
immune cell types by interrogating expression levels of
genes in published signature gene lists [14]. The sig-
natures we used comprised a diverse set of adaptive
and innate immune cell types and contained 509
genes in total (Additional file 2: Table S1). Of these
genes, 98.4% (501) were used uniquely in only one
signature (Additional file 1: Figure S2). Due to the
interconnectedness between immune cell infiltration
and the antigen presenting machinery (APM), we also
defined a seven-gene APM signature that consisted of
MHC class I genes (HLA-A/B/C, B2M) and genes in-
volved in processing and loading antigens (TAP1,
TAP2, and TAPBP). Messenger RNA (mRNA)-based
scores for these signatures were computed separately
for each sample using ssGSEA [30]. ssGSEA measures
the per sample overexpression level of a particular
gene list by comparing the ranks of the genes in the
gene list with those of all other genes.
We employed this approach to computationally assess

the infiltration levels of immune cell types and APM
gene expression levels in 7567 tumor and 633 normal
samples from 19 different cancer types profiled by
TCGA (Additional file 2: Table S2). To achieve a more
focused view of the immune infiltration landscape in hu-
man cancers, we defined two aggregate scores: (1) the
overall immune infiltration score (IIS) from both adap-
tive and innate immune cell scores; and (2) the T cell
infiltration score (TIS) from nine T cell scores (CD8+ T,
Th1, Th2, Th17, Treg, T effector memory, T central
memory, T helper, and T cells) (see “Methods”). We
computed the TIS and IIS of each sample in the study as
the sum of the relevant individual scores.

Validation of the immune cell scoring methodology
Immune cell gene signatures were established by Bindea
et al. [14] using three gene expression datasets [31–33]
generated from sorted immune cell populations. Before
validating these signatures on independent datasets, we
first sought to confirm their discriminatory power on
the datasets used to establish them and asked whether
the expression of these genes separated immune cell
populations into groups that were consistent with
hematopoietic lineages. To this end, we obtained the
microarray expression values for these genes, normalized
with GCRMA [34] and corrected for batch effects using

ComBat [35] (Additional file 1: Figure S3, see
“Methods”). We then computed the principal compo-
nents (PCs) of the batch-effect corrected dataset as a lin-
ear combination of the sorted immune cell types. This
PC analysis successfully separated the cells into groups
consistent with their hematopoietic lineage, suggesting
adequate discrimination power for the signature genes
(Additional file 1: Figure S4). More specifically, PC1 and
PC2 achieved the separation of the following four
groups: (1) macrophages and dendritic cells (DC); (2) B
cells, NK cells (CD56dim and CD56 bright), CD8+, and
CD4+ T cells; (3) Th1, Th2, T gamma delta, and T
follicular helper cells; (4) mast cells, neutrophils, and eo-
sinophils. The separation between CD8+ and CD4+ T
cells was greatly enhanced if batch effect correction and
PC analysis were performed with only the signatures
genes of sorted T cell subpopulations (Additional file 1:
Figure S5, see “Methods”).
Next, we validated the gene signatures and the

ssGSEA methodology in a series of in vitro and in silico
tests. The first test involved sorting immune cell popula-
tions with fluorescence activated cell sorting (FACS) and
generating RNA-Seq gene expression profiles of the
sorted populations. To this end, we obtained ccRCC pa-
tient specimens and sorted prevalent tumor-infiltrating
immune populations such as CD8+ T cells (n = 5), NK
CD16+ cells (n = 2), CD4+ T cells (n = 3), and macrophages
(n = 4) as well as non-immune CD45– cells (n = 1). We
then generated ssGSEA scores for all sorted samples using
Bindea et al. signatures (Additional file 2: Table S3) and
observed that each signature (CD8+ T cell, NK CD56dim
cell, T helper cell, and macrophage signature, respectively)
was able to identify the corresponding sorted population
as being significantly higher than the other sorted popula-
tions (Fig. 1a) (Note that NK CD16+ cells are equivalent
to NK CD56dim cells). Expectedly, the magnitude of the
difference between the first and second highest immune
population varied as a function of the phenotypic differ-
ence between the two populations. For instance, CD8+ T
cells were most similar to NK CD16+ cells, another im-
mune population with cytotoxic properties. Nevertheless,
the first three PCs of ssGSEA scores were able to distin-
guish all tumor-associated immune populations as distinct
clusters (Fig. 1b, Additional file 2: Table S3).
The second in vitro validation test involved comparing

mRNA-based ssGSEA scores with levels of immuno-
fluorescence(IF)-stained immune cells from 10 MSKCC
primary ccRCC tumors (see “Methods” for sample prep-
aration). IF staining was performed for three immune
cell types that are extensively studied with immunohisto-
chemistry: CD8+ T cells (anti-CD8 antibody), natural
killer (NK) cells (anti-CD56 antibody), and regulatory T
cells (Tregs) (anti-FOXP3 antibody). Notwithstanding
that IF is a semi-quantitative technique, we observed
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Fig. 1 (See legend on next page.)
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significant correlations between IF immune cell infiltra-
tion estimates and ssGSEA scores (Fig. 1c). The Spearman
correlation for the NK, Treg and CD8+ T cell populations
were 0.631 (p = 0.025), 0.639 (p = 0.023), and 0.4998
(p = 0.071), respectively. Higher correlation levels may
be precluded by the spatial heterogeneity of immune
cell infiltrates and random sampling effects between
the tissue sections used for IF staining and RNA-Seq.
We next performed an in silico validation test to ask

whether our methodology could successfully infer simu-
lated, i.e. known, mixing proportions of immune cell
types at varying noise levels. To this end, we first utilized
the RNA-Seq data from sorted tumor-infiltrating cells
and generated a reference expression profile for each
one of the sorted immune cell populations (CD8+ T
cells, NK CD16+ cells, CD4+ T cells, and macrophages)
as well as for non-immune CD45– cells (see “Methods”).
Next, we simulated the tumor microenvironment by
linearly mixing these five reference RNA-Seq profiles:
The mixing proportions used in the linear combinations
summed to 1 and were simulated from a uniform (0,1)
distribution. Two hundred in silico mixture samples ob-
tained in this manner formed the “clean” (i.e. no noise)
dataset. To obtain the “noisy” datasets, Gaussian noise
was added at signal-to-noise ratios (SNR) ranging from a
slightly noisy 10:1 to an extremely noisy 1:2 SNR. Two
hundred samples were generated at each noise level.
ssGSEA was then run on all mixture samples with the
CD8+ T, T helper, macrophage, and NK CD56dim signa-
tures from the Bindea et al. set. We observed that the
Spearman correlations between the simulated and
inferred mixing levels remained stable and above 0.6 for
all four cell types (bootstrap p values < 0.05, see
“Methods”) in a long SNR range from 9:1 to 4:1 (Fig. 2a).
Given the low noise levels of RNA-Seq relative to micro-
arrays, the actual SNR in an RNA-Seq experiment would
likely not be lower than 4:1. Thus, the SNR analysis indi-
cated that ssGSEA-based immune decomposition is ro-
bust to the potential technical and/or experimental
sources of noise in the system.
The second in silico test involved the validation of the

two aggregate scores: IIS and TIS. IIS was validated with
leukocyte fractions computationally inferred from available

TCGA DNA methylation data in 13 cancer types (see
“Methods”). The fractions obtained using this orthogonal
data type were highly concordant with the RNA-Seq based
IIS. Out of 13 tumor types, 10 exhibited Spearman correla-
tions greater than 0.6 and all 13 had highly significant p
values (Fig. 2b, Additional file 1: Figure S6 left column). As
expected, IIS levels were often strongly negatively corre-
lated with tumor purity as inferred by ABSOLUTE [36]
(Additional file 1: Figure S6 right column). The other
aggregate score utilized in this study, TIS, was vali-
dated with T cell receptor (TCR) beta chain abun-
dance data computationally inferred from RNA-Seq
data in [37]. Out of the 19 tested cancer types, 17
had highly significant correlation values (brain cancers
GBM and LGG did not), the majority of which were
greater than 0.6 (Fig. 2c, Additional file 1: Figure S7).
We attempted to compare the immune cell scores

from CIBERSORT [16] with our ssGSEA scores (see
“Methods”) even though CIBERSORT has not yet been
validated for RNA-Seq data. We observed that CIBER-
SORT returned zero for the majority of samples in mul-
tiple cell types, whereas ssGSEA by design returns
approximately Gaussian values for any signature. This
difference coupled with the differences in cell sorting
strategies led to poor or moderate correlations for the
majority of immune cell populations (Additional file 2:
Table S9). In cases where CIBERSORT did not return
zeroes and Bindea et al. were attempting to describe the
same cells, we observed relatively stronger levels of con-
cordance (CD8 T cells, T follicular helper cells, and
Tregs; Pearson r = 0.725, 0.395, 0.353; p value = 6.9e-33,
1.2e-8, 4.6e-7 respectively) (Additional file 2: Table S9).
These independent validation results show that our in

silico decomposition is a reliable method to infer im-
mune infiltration levels in tumor samples.

The T cell infiltration spectrum across 19 human cancer
types
The TIS and IIS of each sample in the 19 studied cancer
types were computed as the sum of the individual scores
from the relevant immune subpopulations. We observed
that ccRCC and lung adenocarcinoma (LUAD) repre-
sented the highest end of the TIS and IIS spectrum

(See figure on previous page.)
Fig. 1 In vitro validation of the immune cell scoring method. a Immune cell populations were sorted from ccRCC patient specimens, and profiled
for RNA-Seq gene expression. ssGSEA scores were computed for each sample using Bindea et al. signatures. Each ssGSEA score was the highest
for the corresponding tumor-associated immune cell population and also had a significant difference from the other sorted populations (p values
are provided above each figure). b Principal component analysis (PCA) of sorted tumor-associated immune cell populations. PCs were computed
as a linear combination of 29 immune microenvironment variables (Additional file 2: Table S3). c Immunofluorescence (IF) validation of ssGSEA
scores in an MSKCC cohort. The top left panel shows the unsupervised clustering of ssGSEA scores for NK, CD8+ T, and Treg cells in the 10 patients. IF
staining for two samples at the opposite ends of the heatmap is shown in the bottom left panel (CD56, CD8, and FOXP3 antibodies respectively). The
association of the immune infiltrate levels inferred by these two orthogonal methods (ssGSEA and IF) is shown in the right panel. The IF score (y-axis)
represents the ratio of CD56, CD8, and FOXP3 positive cells versus total cells (DAPI-stained) for a given sample and was determined as the average
across three representative regions on the slide
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Fig. 2 (See legend on next page.)
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(Fig. 3a for TIS and Additional file 1: Figure S8 for IIS).
A pan-cancer view of the levels of individual T cell sub-
populations that make up the TIS variable is presented
in Additional file 1: Figure S9.
Missense mutations within tumor cells are a known

source of neo-antigens that can initiate a T cell
dependent immune response [38]. Previous studies have
reported a significant correlation between “total number
of mutations” and cytolytic activity index (CYT) in a
pan-cancer context [13]. However, synonymous muta-
tions do not give rise to neo-antigens, therefore the cor-
relations between “number of missense mutations” and
CYT are more relevant to study when investigating the
immunogenicity of tumor types. We observed that,
across 18 cancer types, only glioma and stomach adeno-
carcinoma had significant correlations between CYT and
number of missense mutations after correction for mul-
tiple hypothesis testing (Additional file 1: Figure S10c).
When only the 5th to the 95th percentile of the mis-
sense mutation counts was used as implemented in [13],
the number of cancer types with significant CYT versus
mutation count correlations increased to a modest four
(Additional file 1: Figure S10d).
Consistent with CYT findings, we also observed a lack

of consistent positive pan-cancer correlations between
TIS levels in tumors and the corresponding numbers of
somatic missense mutations (Fig. 3b, top left panel). On
the contrary, there was a greater number of tumor types
with significant negative correlations between these two
variables; an observation which held true for CD8, cen-
tral memory and effector memory T cells as well
(Fig. 3b). One notable exception was colorectal adeno-
carcinoma (COADREAD) where the hypermutated sub-
population had elevated levels of TIS (r = 0.303, p value
= 3.6 × 10–7, n = 271) [39] (Fig. 3a). It is not obvious
whether the negative correlations arise due to a direct
relationship between mutated neoepitopes and T cells or
due to an unknown confounding variable. We speculate
that immunoedited [40] tumors which have gone
through equilibrium and escape can lead to divergence
in the association between mutation burden and T cell
infiltration. For instance, tumors which acquire the abil-
ity to suppress T cell activation may continue to accu-
mulate mutations as immune infiltration decreases.

In contrast to CD8 and memory T cells, Th2 and Treg
cell levels generally showed a positive correlation with
mutation load (Fig. 3b). These correlations could be in-
dicative of an immunosuppressive environment enriched
in Treg and/or Th2 cells where tumors have escaped
elimination by the immune system despite bearing a
large number of potentially immunogenic mutations.
Immune infiltration is expected to increase the expression

of APM genes in the tumor through paracrine signaling and
mRNA generated by the infiltrating cells. Therefore, we in-
vestigated the correlation between the TIS and APM scores
across the tested tumor types. As expected, the median TIS
and the median APM score in the 19 cohorts showed a
strong correlation (Spearman r = 0.611, p= 5.5 × 10–3),
where ccRCC and LUAD were again among the highest
with respect to the within-cohort TIS-APM correlation
(Fig. 4a). Cancer types with low within-cohort correlations
included GBM, LGG, ACC, and KICH. APM levels in these
cancer types are indeed most strongly correlated with mac-
rophages or subpopulations of dendritic cells (activated,
immature, or total DCs) (Additional file 1: Figure S24).
Interestingly, a comparison of the APM expression be-

tween the tumor and normal tissue for kidney (clear cell,
chromophobe, and papillary sub-histologies) and non-
small cell lung tumors (adenocarcinoma and squamous
cell) revealed that the tumor-normal difference was
highly significant for ccRCC (q = 3.1 × 10–38, Mann–Whitney
test) and papillary RCC (q = 2.7 × 10–13, Mann–Whitney
test) but not significant for other tumor types (Fig. 4b). Not-
ably, the tumor-normal difference for the APM score was
the most pronounced in ccRCC compared with 14 other
cancer types (Additional file 1: Figure S11) (no nor-
mal samples were available in the TCGA dataset for
the other cancers). APM expression of ccRCC tumors
did not show a positive association with either grade
(Spearman r = –0.11, p = 0.02, n = 421) or stage
(Spearman r = –0.14, p = 0.004, n = 422). Moreover, the
grade-specific and stage-specific differences of APM
expression levels were weak (p = 0.0704 and 0.0037,
respectively, ANOVA) (Additional file 1: Figure S12).
These results indicate that APM upregulation in
ccRCC is likely an intrinsic ccRCC phenomenon and
not dependent of tumor necrosis or other features as-
sociated with aggressive disease.

(See figure on previous page.)
Fig. 2 In silico validation of the immune cell scoring method. a In silico validation of immune cell scores using simulated mixing proportions.
RNA-Seq profiles of FACS-sorted NK cells, macrophages, CD4+ and CD8+ T cells, and non-immune CD45– cells were mixed with known proportions to
obtain a “clean” mixture. Noise was added at varying SNRs. Mixing levels were then inferred by ssGSEA from the “clean” and noisy mixtures. The
Spearman correlations between the simulated and inferred levels (top panel) and the bootstrap p values for these correlation values (bottom panel) are
shown on the y-axes (Additional file 1: Figure S18 and “Methods” for the calculation of the bootstrap p values). b Validation of IIS with
methylation-based leukocyte fractions. Spearman correlations between the two orthogonal scores are shown on the x-axis for 13 tumor
types. c Validation of TIS with TCR beta chain abundance. Both scores are computationally inferred from RNA-Seq data but employ different
approaches to measure T cell levels. Spearman correlations are shown on the x-axis for 19 tumor types
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Fig. 3 (See legend on next page.)
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In a survey of the other immune cell types, we found
that the unique features of ccRCC immune infiltration
extends to high levels of CD8+ T cells, plasmacytoid
DCs (pDC), T cells, cytotoxic cells, and neutrophils; and
low levels of Th2 and Treg cells compared with the
other 18 cancer types (Additional file 1: Figure S13).

Immune-infiltrate decomposition in ccRCC reveals three
distinct patient clusters
In our effort to characterize the microenvironment of
ccRCC tumors, we expanded our repertoire of 24 im-
mune cell types to also include an angiogenesis signature
[41] (Additional file 2: Table S1) and immunotherapeutic
targets PD-1 (PDCD1), PD-L1 (CD274), and CTLA-4

(CTLA4). Angiogenesis is well established to be a char-
acteristic component of immune inflammation [42] and
ccRCC is known to have high angiogenic capacity due to
constitutive activation of the hypoxia-inducible factor
pathway [43]. We confirmed the high angiogenesis levels
in ccRCC via a comparison against 18 other tumor types
explored in this study (Additional file 1: Figure S13).
Using the ssGSEA scores from the expanded panel of

28 immune-related and inflammation-related gene sig-
natures, we performed unsupervised clustering on the
TCGA cohort of 415 patients (see “Methods”). Strik-
ingly, this analysis revealed three distinct clusters that
predominantly separated according to levels of T cell in-
filtration and APM gene expression, here termed the (1)

Fig. 4 Pan-cancer analysis of TIS association with antigen presenting machinery (APM) gene expression. a The association between the median
APM score and the median T cell infiltration score across 19 tumor types. The sizes of the circles are proportional to the within-cohort Spearman
correlation between TIS score and APM score. KIRC and LUAD are among the highest not only for APM score but also for the APM–TIS correlation.
b The APM score differences between tumors and adjacent normal tissue in kidney and lung neoplasms. Each circle is the APM score of a tumor
(red) or an adjacent normal (blue) sample. No significant tumor-normal differences are observed in lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), or kidney chromophobe (KICH) at α = 0.05. However, clear cell and papillary renal cell carcinoma (KIRC and KIRP) tumors
significantly overexpress APM genes. The Benjamini–Hochberg adjusted p values are reported in the figure (Mann–Whitney test)

(See figure on previous page.)
Fig. 3 Analysis of T cell infiltration in 19 tumor types. a T cell infiltration scores (TIS) and the corresponding mutation load in 19 tumor types. TIS
is an aggregate score obtained as the average of nine distinct T cell subset scores (CD8+ T, Th1, Th2, Th17, Treg, T effector memory, T central
memory, T helper, and T cells). Each circle in the top panel shows the TIS for a tumor sample. In the bottom panel, the vertical bar corresponding
to each circle shows the number of somatic missense mutations. Tumor types are ordered from left to right according to increasing median TIS
(medians indicated by horizontal gray bars). b Correlation of mutation load with TIS and levels of individual T cell subpopulations. Spearman
correlation coefficients are computed between number of somatic missense mutations and ssGSEA-based immune cell infiltration levels. Coefficients
are plotted on the y-axis in bar plots and asterisks are added to indicate level of significance, as denoted in the legend. Tumor types are ordered in the
same order as in Fig. 3a
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T cell enriched (n = 65, 15.7%), (2) heterogeneously infil-
trated (n = 257, 61.9%), and (3) non-infiltrated clusters
(n = 93, 22.4%) (Fig. 5a). We observed that the T cell
enriched tumors had markedly high expression of gran-
zyme B (GZMB) and interferon-gamma (IFNG), effector
molecules prominently associated with T cell response.
Despite high levels of T cell infiltration and effector mol-
ecules, patients in the T cell enriched class had the poor-
est cancer-specific survival whereas the non-infiltrated
group fared the best (p = 0.05; log-rank test) (Fig. 6a).
Coupled with the observation that inhibitory checkpoint
molecules PD-1 and CTLA-4 are also expressed at high
levels in the T cell enriched class, this finding suggests
that effector T cells in the tumor microenvironment may
not be able to exert their pro-survival effects due to be-
ing offset by inhibitory cells/molecules and factors such
as exhaustion and/or anergy.
An orthogonal measurement of tumor purity by the

DNA-based ABSOLUTE algorithm [36] confirmed that
the non-infiltrated group was the purest cluster (mean
0.640) and the T cell enriched group was the least pure
cluster (mean 0.436) (p < 2 × 10–16, ANOVA). We then
assessed the stromal content of samples using the
RNA-based ESTIMATE algorithm [15] and investi-
gated its association with the clusters. We found that
the non-infiltrated cluster demonstrated the lowest
stromal scores whereas the heterogeneous and T cell
enriched clusters displayed mixed degrees of stromal
content (p = 4 × 10–7, ANOVA).
In order to validate that the three immune infiltration

clusters are not unique to the TCGA ccRCC cohort, we
utilized a separate publicly available dataset of 101
ccRCC tumors for which comparable multi-platform
data were available [29] and refer to it as the SATO
dataset from here on. A random forest classifier was
trained on the TCGA cohort using the ssGSEA scores of
28 immune-related variables. This classifier was used to
predict the immune infiltration class for each SATO pa-
tient (see “Methods”). The heatmap of the same 28 im-
mune features in the SATO dataset confirmed the
existence of the three classes as well as the elevated ex-
pression levels of APM, granzyme B, and interferon-
gamma in the T cell enriched cluster (Additional file 1:
Figure S14a).
To further characterize the clusters’ unique molecular

features, we next performed an unbiased analysis of
differential gene and protein expression between the
clusters. We excluded the signature genes and performed
pathway analysis [44] for the genes significantly
overexpressed in one of the clusters (q < 5 × 10–5, Mann–
Whitney test). We observed that the T cell enriched group
had significant overexpression of both adaptive and innate
immunity genes (Fig. 5b and Additional file 2: Table S4A).
On the other hand, the non-infiltrated group had significant

overexpression of metabolism-related and mitochondria-
related genes (Additional file 2: Table S4B), while the
heterogeneously infiltrated group had overexpression of
angiogenesis-related genes (Additional file 2: Table S4C) (q
< 5 × 10–5, Mann–Whitney test). These findings were again
validated in the SATO dataset (Additional file 1: Figure
S14b, Additional file 2: Table S5A–C). We next utilized the
TCGA reverse phase protein array (RPPA) dataset for the
differential protein expression analysis. We consistently
observed overexpression of immune-related proteins, such
as Lck and Syk, for the T cell enriched group; and an over-
expression of angiogenesis-related proteins, such as Smad1
[45, 46] and c-Kit [47–49], for the heterogeneously infil-
trated group (q < 0.01, Mann–Whitney test) (Fig. 5c).
A proteomic dataset for the SATO cohort was not
available.
PCA on the ccRCC immune infiltration scores showed

that the three clusters defined above cannot be explained
by a one-dimensional infiltration gradient and most
likely reflect distinct biology (Fig. 5d). Even though non-
infiltrated and heterogeneously infiltrated tumors are
not as well distinguished from each other as they are
from the T cell enriched group, the evidence from differ-
ential gene and protein expression analyses indicate that
these clusters are likely distinct as they have unique
biology with respect to pathways such as those in
angiogenesis and mitochondria/metabolism.
The T cell enriched cluster in the TCGA dataset exhib-

ited two subclusters, here termed TCa (n = 39, 60%) and
TCb (n = 26, 40%) (Additional file 1: Figure S15a), with
different immune cell infiltration and gene expression
profiles. Gene set enrichment analysis with DAVID [44]
and ClueGO [50] revealed that the genes overexpressed
in TCa (q < 5 × 10–5, Mann–Whitney test) were associ-
ated with metabolic and mitochondrial processes (Add-
itional file 1: Figure S15b, Additional file 2: Table S5A).
The genes overexpressed in TCb (q < 5 × 10–5, Mann–
Whitney test) were enriched for processes related to cell
cycle, extracellular matrix (ECM), and cellular prolifera-
tion (Additional file 1: Figure S15b, Additional file 2:
Table S5B). We also found that these two subclusters
had prognostic differences (Additional file 1: Figure
S15c), with the TCb patients having worse cancer-
specific survival than the TCa patients (p = 0.0162, log-
rank test). Moreover, the TCb subcluster had signifi-
cantly higher macrophage infiltration (p = 5.7 × 10–4)
and stromal score (p = 4.6 × 10–4, Mann–Whitney test)
with a moderate correlation between these two variables
(Spearman r = 0.418, p = 5.8 × 10–4, n = 65). This correl-
ation generalized to the entire TCGA ccRCC cohort
(Spearman r = 0.561, p < 2 × 10–16, n = 415), suggesting
the possibility of macrophage recruitment by stromal
cells [51] (Additional file 1: Figure S16). These results
confirm the biologically distinct characteristics of the
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TCa and TCb subclusters within the T cell enriched
group.

T cell infiltration levels are associated with clinical
outcomes
We found that tumor immune-infiltration in ccRCC was
associated with distinct clinicopathologic features. Male
patients (p = 0.018), higher stage (p = 0.006), and higher
grade (p = 0.003) tumors were over-represented in the T
cell enriched class compared to the non-infiltrated and
heterogeneously-infiltrated groups (Fisher’s exact test).
We next investigated the univariate significance of each
T cell subset and angiogenesis as a predictor of cancer-
specific survival. Cox proportional-hazards regression
showed that, in both the TCGA (n = 415) and SATO (n
= 101) datasets, the levels of Th17 cells and angiogenesis
were strongly associated with favorable outcomes,
whereas Th2 and Treg cells were associated with adverse
outcomes (Fig. 6b) consistent with previous reports
[18, 41, 52–55]. To optimize prognostic discrimin-
ation, we explored Th17 ratios with other immune
subtypes and identified the Th17/Th2 ratio as the most
predictive in both the TCGA and SATO cohorts (Fig. 6b, c).
Moreover, we observed that CD8+ T cell levels alone were
not significantly associated with improved survival in the
TCGA cohort, but the frequently used CD8+ T/Treg ratio
was (Fig. 6b, c).
Additional analyses demonstrated that previously iden-

tified prognostic features such as tumor stage and mo-
lecular ccRCC subtype (ccA/ccB) [56] were associated
with similarly prognostic immune infiltration scores. In
particular, Treg and Th17 infiltration levels had negative
and positive association, respectively, with tumor stage
(q = 6.1 × 10–8 for both, ANOVA) (Additional file 1: Fig-
ure S17). Treg and Th2 infiltration levels were higher in
ccB (n = 175) subtype tumors (q = 3.9 × 10–9 and 1.2 ×
10–8, Mann–Whitney test) compared with ccA (n = 205),
which was previously shown to have better prognosis
relative to ccB [56] (Additional file 1: Figure S18). In
contrast, Th17 and CD8+ T cell infiltration levels were
higher in ccA tumors (q = 2.8 × 10–12 and 5.8 × 10–6,
Mann–Whitney test).

Association of immune infiltration patterns with
intratumor heterogeneity and subclonality
We next investigated whether the immune infiltration
classes predicted by our mRNA-based decomposition al-
gorithm were robust to intratumoral heterogeneity. We
obtained a microarray gene expression dataset from the
Gerlinger et al. [57] ccRCC multiregion tumor study (re-
ferred to as GERLINGER from here on). This dataset in-
cludes 56 tumor and six normal samples from nine
ccRCC patients. The authors sampled several tumor re-
gions from each patient to investigate intratumor hetero-
geneity. We computed the ssGSEA-based immune cell
infiltration scores and also the aggregate TIS for these
samples, and applied the TCGA-based random forest
classifier to predict the immune infiltration class for
each sample (Fig. 7a). Interestingly, tumors with high T
cell infiltration levels (RK26, RMH002) had highly simi-
lar immune infiltration profiles in most sampled regions;
and all regions were predicted to be in the T cell
enriched category. In contrast, tumors with relatively
lower levels of T cells showed immune intratumor
heterogeneity and had regions predicted to be in
multiple different immune infiltration categories. For in-
stance, regions in tumors RMH008 and EV007 were
found to contain members in all three immune infiltra-
tion classes (T cell enriched, heterogeneously infiltrated,
or non-infiltrated).
T cell receptor β-chain (TCRb) read counts from

ultra-deep TCR sequencing and total T cell counts from
immunohistochemistry (IHC) were also available for a
subset of the GERLINGER microarray samples (n = 6)
[58] (Additional file 2: Table S7). These two types of T
cell abundance estimates have previously been shown to
have a statistically significant correlation across 14 sam-
ples [58], despite RMH002-R6 being a strong outlier in
terms of IHC-based T cell counts. We observed that the
significance of the correlation was lost when the analysis
was restricted to the six samples that also had micro-
array data (Fig. 7b, left panel) regardless of whether
RMH002-R6 was included in the correlation computa-
tion (p = 0.15 and 0.089 with and without RMH002-R6,
respectively). However, the ssGSEA-based TIS had at

(See figure on previous page.)
Fig. 5 Characterization of immune infiltration clusters in ccRCC. a Unsupervised clustering of 415 ccRCC patients from the TCGA cohort using
ssGSEA scores from 24 immune cell types, three immunotherapy targets (PD-1, PD-L1, CTLA-4), and angiogenesis. Hierarchical clustering was performed
with Euclidean distance and Ward linkage. We discover three distinct immune infiltration clusters, here termed (1) non-infiltrated, (2) heterogeneously
infiltrated, and (3) T cell enriched. The T cell enriched cluster is characterized by tumors with high APM scores and high granzyme B and interferon
gamma mRNA expression levels. b Differential expression analysis with Mann–Whitney test for all genes in the TCGA RNA-Seq dataset
excluding signature genes. Only genes that are significantly overexpressed in one cluster at a q-value cutoff of 5 × 10–5 are shown. Pathway analysis
using DAVID [44] reveals that the genes overexpressed in the three clusters (n = 1110, 181, and 277, respectively) are enriched in (1) adaptive and
innate immune response, (2) angiogenesis, and (3) mitochondrial and metabolic processes. c Differential expression analysis with Mann–Whitney test
for all proteins in the TCGA reverse phase protein array (RPPA) dataset. Only proteins that are significantly overexpressed in one cluster at a q-value
cutoff of 0.01 are shown. This analysis recapitulates the significant differences in immune response in the T cell enriched cluster and in angiogenesis in
the heterogeneously infiltrated cluster. d PCA of the immune infiltration scores in ccRCC. The three clusters most likely reflect distinct biology
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least borderline significant correlation with both of these
variables despite the small number of samples (p = 0.047
for the correlation with IHC-based T cell counts and

0.057 for the correlation with total TCRb read counts)
(Fig. 7b, middle and right panels). Moreover, the scatter
plots with TIS interestingly showed that the IHC-based

Fig. 6 Prognostic significance of ccRCC immune infiltration classes and distinct T cell subsets. a Kaplan–Meier curves for cancer-specific survival in
ccRCC immune infiltration classes. The T cell enriched class has the poorest survival whereas the non-infiltrated class is associated with better
outcomes (log-rank test p value = 0.05). b Prognostic significance of angiogenesis and distinct T cell subsets in ccRCC. Univariate Cox proportional-hazards
was used to regress ssGSEA scores on cancer-specific survival. The resultant p values in the TCGA dataset were adjusted for multiple hypothesis testing,
log-transformed, and then plotted against the log-transformed p values from the SATO dataset. Survival associations concordant in both datasets are
denoted in green and red for improved and poor outcome respectively. Discordant associations are denoted in gray. P values from the SATO dataset are
not adjusted for multiple hypothesis testing since this is the validation cohort. c Kaplan–Meier curves for cancer-specific survival in the above-median and
below-median groups for the CD8+ T/Treg and Th17/Th2 ratios. The median values for these two ratios are able to stratify both the TCGA and the SATO
cohorts into groups with significant survival differences
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T cell count for RMH002-R6 was not an outlier (Fig. 7b,
middle panel), but the total TCRb read count for the
same sample was (Fig. 7b, right panel) (p value increases
from 0.057 to 0.021 for the correlation between TIS and
total TCRb read count when RMH002-R6 is removed).
This finding suggested that the discordance of the T cell
abundance estimates for this sample may not be due to
an over-representation of T cells in the FFPE section as
speculated in [58], but may be due to an underperform-
ance of the steps involved in ultra-deep sequencing of
TCRb reads from bulk tumor DNA. Yet, this is not cer-
tain as spatial heterogeneity of T cell infiltrates and ran-
dom sampling effects confound all such comparisons.
A recent study on NSCLC reported an inverse rela-

tionship between T cell infiltration and subclonal archi-
tecture [59]. We performed clonality assessment on the
TCGA ccRCC cohort using SciClone [60] (see “Clonality
assessment” in “Methods”); and consistent with the
NSCLC study, found that more clonal tumors (i.e. tu-
mors with fewer subclones) had higher levels of CD8+ T
cells, cytotoxic cells, APM, and TIS (Fig. 7c). Clonality
for the SATO ccRCC cohort was also assessed using Sci-
Clone (see “Methods”) and the trends for the inverse as-
sociation between immune infiltration and subclonal
architecture were recapitulated in this dataset although
p values did not reach significance and the trends were
rather modest (Additional file 1: Figure S19). Both the
TCGA and SATO results held true even when the im-
mune scores were adjusted for purity (Additional file 1:
Figure S20).

Baseline elevation in TIS and APM in ccRCC patients
responding to nivolumab
Given the relationships we have identified between dis-
tinct immune cell subsets, APM, and clinical status, we
next used RNA-Seq to ask whether there is a relation-
ship between the baseline immune landscape and re-
sponse to immunotherapy. Nivolumab (anti-PD-1) is
FDA-approved for the treatment of advanced RCC, so

we investigated the pretreatment immune profile of
patients treated with this agent using a hypothesis-
generating set of six patients. We found that both TIS
and APM were elevated in responding patients (those
with a partial or complete response to nivolumab)
whereas they were in the lowest quartile for patients
with progressive disease on nivolumab (Fig. 8). A similar
pattern was observed when examining the relative ex-
pression of T cell effector genes IFNG and GZMB. This
correlation should be substantiated in a larger cohort to
determine if it has predictive power in determining
response to PD-1 blockade.

Association of immune infiltration with genomic
alterations and neo-antigens
In light of our evidence suggesting the presence of im-
munologically distinct subsets of ccRCC tumors, we in-
vestigated mutation load and recurrent genomic
alterations as potential drivers of the observed T cell in-
filtration. The tumors from the non-infiltrated class har-
bored slightly more somatic missense mutations than
the T cell enriched class (the median number of somatic
missense mutations in the non-infiltrated group was
36.5 versus 33 in the T cell enriched group; q = 0.07,
ANOVA). Out of the 11 driver genes commonly mu-
tated in ccRCC, only PBRM1 was mutated at signifi-
cantly different rates between the three populations
(Additional file 1: Figure S21a; higher in non-enriched
versus T cell enriched q = 0.04; higher in heterogeneous
versus T cell enriched q = 0.04; Fisher’s exact). However,
this observation was not validated in the SATO dataset.
None of the common arm-level CNVs observed in
ccRCC tumors were found at different rates between the
three groups (Additional file 1: Figure S21b).
Cancer neo-antigens have been demonstrated to drive

T cell infiltration of tumors in murine models of cancer
[38, 61]. We hypothesized that the abundance or quality
of cancer neo-antigens might differ between our tumor
classes. To address this theory, we determined the HLA-

(See figure on previous page.)
Fig. 7 Association of ccRCC immune infiltration patterns with intratumor heterogeneity. a The immune infiltration class for each Gerlinger et al.
multiregion tumor sample was predicted with a random forest classifier trained on the TCGA ccRCC cohort. The y-axis shows immune cell types
and immunotherapy targets ordered according to Ward linkage in hierarchical clustering. The x-axis shows normal and multiregion tumor
samples with a supervised order. Six normal samples are on the far left and tumor samples from each patient are grouped together. Patients are
ordered according to increasing average infiltration level from left to right. Tumor samples within each patient are ordered according to
alphabetical order. b Comparison of TIS with TCRb read counts and immunohistochemistry-based T cell counts. Left: The scatter plot and Pearson
correlation of TCRb read counts with IHC-based T cell counts from [58] when restricted to the six samples that also have microarray expression
data. A linear regression line is fitted through the data after exclusion of the outlier RMH002-R6 as in [58]. Middle: The scatter plot and Pearson
correlation of IHC-based T cell counts with the ssGSEA-based aggregate TIS. A linear regression line is fitted through the data. Right: The scatter plot
and Pearson correlation TCRb read counts with the ssGSEA-based aggregate TIS. A linear regression line is fitted through the data after exclusion
of the outlier RMH002-R6. c SciClone clonality analysis for TCGA ccRCC samples. The x-axis shows the number of single nucleotide variant (SNV)
clusters for each tumor where 1 corresponds to clonal tumors and higher number of clusters indicate subclonal architecture. P values are derived
from trend tests between the number of SNV clusters and ssGSEA scores. The fraction of samples for each SNV cluster number is 4.6% for one
cluster (n = 9), 55.7% for two clusters (n = 108), 27.8% for three clusters (n = 54), 7.7% for four clusters (n = 15), 3.6% for five clusters (n = 7), 0.5%
for six clusters (n = 1)
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A, HLA-B, and HLA-C alleles of each ccRCC TCGA
patient using OptiType [62]. We then predicted the pro-
tein alterations expected to result from missense muta-
tions in each tumor and identified those predicted to
bind to MHC-I molecules (see “Methods”). We found
no significant difference in the median MHC-I binding
count (Additional file 1: Figure S22a) or median binding
affinity (Additional file 1: Figure S22b) of neo-antigens
between the three classes of TCGA tumors. We also
found no significant difference in the fraction of tumors
with non-silent somatic mutations in an expanded set of
APM genes (Additional file 2: Table S8A-C). These re-
sults suggest that factors other than genomic alterations
may be contributing to the immune infiltration of
ccRCC tumors.

ImmunExplorer web application
We have created a publicly available web application
(http://kidneyimmune.chenghsiehlab.org/) that allows
users to interactively visualize and perform integrated
analysis of immune cell type levels, RNA-Seq, and
clinical outcomes from the TCGA and Sato ccRCC
datasets.

Discussion
In this analysis, we present a computational approach
based on overexpression of gene signatures for profiling
the immune infiltration patterns in bulk tumor samples.
Our methodology is different from deconvolution
methods such as CIBERSORT [16] and DeconRNA-Seq
[17] in that no regression or quadratic programming is
involved, and only the ranks of the genes are used to
infer relative cell levels. Hence, our approach does not
“deconvolve” the mRNA expression data, but simply
“decomposes” the immune infiltrate in the tumor micro-
environment into levels of individual immune cell
populations.
Compared to CIBERSORT and DeconRNA-Seq, our

decomposition method has the advantages of (1) being
compatible with both microarray and RNA-Seq plat-
forms, and (2) not requiring reference expression vec-
tors, which actually reduce the robustness of a method
due to the fact that even small changes in the reference
vectors may lead to substantial differences in the output
when the deconvolution goal is cast into an optimization
problem as in CIBERSORT and DeconRNA-Seq. Im-
mune cell reference expression vectors are highly struc-
tured, static snapshots of the transcriptional programs of

Fig. 8 Immune infiltration profiles in nivolumab-treated ccRCC patients. RNA-Seq profiles of six ccRCC patients were generated and the patients
were then treated with the checkpoint inhibitor nivolumab (anti-PD1). T cell infiltration as well as APM, IFNG, and GZMB levels are generally high
in responders (complete response, partial response, or stable disease) and the highest levels are observed in the patient with complete response
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cell populations, and are highly likely to show inter-
laboratory differences due to immune cells’ stimulation
method, polarization state, activation state, exhaustion,
or anergy. In contrast, the most abundantly expressed
genes for a given cell type show little difference across
different conditions. Therefore, gene signatures as in our
approach offer a flexible yet principled approach to ar-
rive at robust results.
One caveat to gene signatures is that two of them are

defined by only a single gene in this study: Tregs
(FOXP3) and pDCs (IL3RA). Decomposition of immune
cell types with only few signatures genes is likely to be
less robust than for immune cell types with many sig-
nature genes. Nevertheless, we observed that the pDC
score was highly correlated with the angiogenesis
score (a 40-gene signature) across many cancer types
(Additional file 1: Figure S25) and this association has
a known mechanism whereby pDCs induce angiogen-
esis [63]. Also, we were able to validate the Treg
scores with immunofluorescence. Therefore, we feel
confident that, despite the small number of genes,
these signatures are tracking the intended cells.
Our results highlighted the immunotherapy-responsive

tumors ccRCC and LUAD as having the highest T cell
infiltration median. Moreover, ccRCC, but not LUAD,
demonstrated significant upregulation of antigen presen-
tation machinery in comparison with adjacent normal
tissue. Preliminary evidence emerging from clinical trials
of immune checkpoint blockade therapy suggests that
high mutation burdens may be predictive of good re-
sponses in NSCLC and melanoma [10, 11]. However,
ccRCC is another immunotherapy-responsive tumor
despite bearing orders of magnitudes fewer mutations
than NSCLC and melanoma. Our data suggest that
ccRCC tumors may be responsive to checkpoint block-
ade because of a potent pre-existing immune infiltration
and overall elevated level of antigen presentation and
recognition.
Immune checkpoint blockade is generally thought to

function by augmenting the activity of T cells subse-
quent to their priming by activated antigen presenting
cells [64]. This suggests that “upstream” immunologic
events (such as the stimulation of antigen presenting
machinery) occur at baseline, resulting in primed anti-
tumor T cells that are, in turn, made capable of control-
ling tumor growth upon treatment with immune check-
point blockade. It is thus tempting to speculate that
such events (resulting in effective antigen presentation)
could be used to screen candidates for immunotherapy
in the future. Our results on treatment response to the
anti-PD-1 mAb nivolumab (Fig. 8) suggest the hypoth-
esis that a pre-treatment analysis of antigen presenting
machinery, and the corresponding T cell infiltrate, could
be one method of achieving this. Given that PD-1

blocking mAbs are approved for a growing list of diverse
cancers, such results could be applicable well beyond
ccRCC.
Unsupervised clustering of ccRCC tumors using im-

mune infiltration levels revealed three clusters of differ-
entially infiltrated tumors, which were subsequently
validated in an independent cohort. In particular, we
found that the T cell enriched cluster was characterized
by high expression levels of immune-response related
genes including the immune checkpoint genes PD-1,
PD-L1, and CTLA-4. Interestingly, a recent study also
identified an aggressive, sunitinib-resistant molecular
subtype of metastatic ccRCC with cellular and molecular
characteristics similar to the T cell enriched tumors dis-
covered here [65]. These findings across several cohorts
of ccRCC patients suggest that a subset of ccRCC tu-
mors may be both highly immune-infiltrated and im-
munosuppressed, as indicated by elevated expression of
immune-checkpoint surface markers. Our findings also
underscore the prognostic significance of specific T cell
subsets, consistent with previous tissue-based studies of
ccRCC and other tumor types [66].
Our in-depth analysis including driver mutations,

CNVs, mutation burden, and neo-antigens was not able
to identify any molecular mechanisms for the differential
immune infiltration in ccRCC clusters. However, the
lack of association between immune infiltration and pre-
dicted MHC-I binding tumor neo-antigens does not rule
out neo-antigens as a driver of immune infiltration. Fur-
ther, computational techniques for the prediction of im-
munogenic neo-antigens are not yet mature: most
studies focusing on immunogenic epitopes remedy this
shortcoming by using a combination of computational,
biochemical, and cellular techniques. Others have sug-
gested that the clonality of neo-antigens may drive im-
mune recognition [59] and we consistently observed an
inverse correlation between intratumor heterogeneity
and immune infiltration in multiple datasets. An import-
ant caveat of the clonality analysis is that spatially segre-
gated clones cannot be identified in the TCGA dataset.
Overall, our results suggest that genetic alterations, mu-
tation burden, and predicted neo-antigens currently pro-
vide an incomplete explanation for the degree of
immune infiltration in ccRCC.
Our results illustrate the utility of ssGSEA for inferring

immune infiltration levels in tumor specimens. The
methodology in this study could directly be extended to
the investigation of immune infiltration and its potential
drivers in other tumor types and in various clinical set-
tings including response to checkpoint blockade.

Conclusions
In this study, we report that ccRCC is the most highly T
cell infiltrated tumor type when compared with 18 other
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malignancies, and that the TIS as well as the expression
levels of MHC class I APM have potential utility as bio-
markers of response to PD-1 blockade therapy. It has
previously been shown that ccRCC is an exception to
the rule among immunotherapeutically responsive can-
cer types in that ccRCC has only a modest mutation
load [27]. Here, we show for the first time that another
unique feature of ccRCC is the upregulation of APM ex-
pression in tumor samples compared to adjacent normal
tissue.
Our finding that the high T cell infiltration in the

tumor persists throughout different geographic regions
has possible translational relevance in terms of relying
on a single core biopsy to characterize a tumor immune
profile. We also present evidence that immune infiltra-
tion is negatively associated with number of subclones
(lower ITH) in ccRCC, a finding consistent with a recent
study [59] that observed the same phenomenon in lung
carcinomas.
Ultimately, our approach enables the determination of

a diverse array of immune infiltration patterns from
small amounts of tissue such as biopsy samples; a strat-
egy which could easily be incorporated into the clinical
and trial setting.

Methods
Datasets
Gene and protein expression data
The pancan normalized gene-level RNA-Seq data for the
TCGA cohorts were downloaded from the UC Santa
Cruz Cancer Genomics Browser [67] (https://genome-
cancer.ucsc.edu/). These cohorts consisted of adrenocor-
tical cancer (ACC, Ntumor = 79, Nnormal = 0), bladder
urothelial carcinoma (BLCA, Ntumor = 407, Nnormal = 19),
lower grade glioma (LGG, Ntumor = 530, Nnormal = 0),
breast invasive carcinoma (BRCA, Ntumor = 1097, Nnormal

= 113), cervical and endocervical cancer (CESC, Ntumor

= 305, Nnormal = 3), colon and rectum adenocarcinoma
(COADREAD, Ntumor = 383, Nnormal = 50), glioblastoma
multiforme (GBM, Ntumor = 167, Nnormal = 5), head and
neck squamous cell carcinoma (HNSC Ntumor = 521,
Nnormal = 43), kidney chromophobe (KICH, Ntumor = 66,
Nnormal = 25), kidney clear cell carcinoma (KIRC, Ntumor

= 530, Nnormal = 72), kidney papillary cell carcinoma
(KIRP, Ntumor = 291, Nnormal = 32), liver hepatocellular
carcinoma (LIHC, Ntumor = 373, Nnormal = 50), lung
adenocarcinoma (LUAD, Ntumor = 510, Nnormal = 58),
lung squamous cell carcinoma (LUSC, Ntumor = 502,
Nnormal = 51), ovarian serous cystadenocarcinoma
(OVCA, Ntumor = 266, Nnormal = 0), prostate adenocarcin-
oma (PRAD, Ntumor = 498, Nnormal = 52), skin cutaneous
melanoma (SKCM, Ntumor = 472, Nnormal = 1), thyroid
carcinoma (THCA, Ntumor = 513, Nnormal = 59), and uter-
ine carcinosarcoma (UCS, Ntumor = 57, Nnormal = 0).

TCGA ccRCC-specific analyses were performed with
the KIRC datasets downloaded from Firebrowse (http://
firebrowse.org). RSEM-normalized gene level data and
reverse phase protein array (RPPA) data were used for
gene and protein expression analyses, respectively.
Samples that had RNA-Seq, mutation and clinical
data (n = 415) were included in the discovery phase of
the immune infiltration clusters.
The Sato et al. [29] Agilent microarray gene expression

dataset was downloaded from ArrayExpress (http://
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1980/)
and all samples (n = 101) were included in the analysis.
The probe identifiers in the Agilent platform were
mapped to HGNC gene symbols and the arithmetic mean
across identifiers was used for cases where multiple Agi-
lent identifiers mapped to a single HGNC symbol.
The Gerlinger et al. [57] Affymetrix Human Gene 1.0

ST microarray gene expression dataset was obtained via
personal communication with the authors on 10 Novem-
ber 2014. This dataset includes 56 tumor and six normal
samples from nine ccRCC patients. All samples were in-
cluded in our analysis. The probe sets in this Affymetrix
platform were mapped to HGNC gene symbols and the
geometric mean across probe sets was used for cases
where multiple probe sets mapped to a single HGNC
symbol.

Nivolumab-treated patients
Pre-treatment biopsies of six metastatic ccRCC patients
were obtained and RNA-Seq datasets were generated.
Reads were aligned with TopHat [68]. Gene quantifica-
tion was performed with RNA-SeQC [69]. Stratification
of the patients was based on objective response to nivo-
lumab by RECIST criteria.

TCGA mutation data
PANCAN mutation calls were downloaded from the
BROAD Firehose’s stddata_2015_02_04 dataset (http://
gdac.broadinstitute.org/). Additional COADREAD muta-
tion calls were obtained from the MSKCC cBio portal
[70] via personal communication. These mutation calls
were used for all analyses, excluding neo-antigen
analysis.

Clinical data
Clinical data for the TCGA dataset were obtained from
the supplementary files of the ccRCC marker paper [28]
(KIRC + Clinical + Data + Jul-31-2012). Vital status was
determined from the field “Composite Vital status.” Clin-
ical data for the SATO dataset were obtained through
direct communication with the authors. Purity values for
SATO samples were computed based on the levels of
chromosome 3p loss.
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Gene signatures
Marker genes for immune cell types were obtained from
Bindea et al. [14]. Angiogenesis marker genes were ob-
tained from Masiero et al. [41]. A signature of antigen
presentation was created based on genes exclusively in-
volved in processing and presentation of antigens on
MHC [12]. All signature genes are listed in Additional
file 2: Table S1.

Implementation of ssGSEA
Infiltration levels for immune cell types and activity
levels for angiogenesis and antigen presentation were
quantified using the ssGSEA [30] implementation in R
package gsva [71]. ssGSEA is a rank-based method that
computes an overexpression measure for a gene list of
interest relative to all other genes in the genome. Nor-
malized RNA-Seq or microarray datasets mentioned
above were provided as input without further processing
(i.e. no standardization or log transformation). A typical
execution is gsva(data, list_of_signatures,
method=”ssgsea”). The output for each signature is
a near-Gaussian list of decimals that can be used in
visualization/statistical analysis without further
processing.

Aggregate TIS and IIS scores
The ssGSEA scores for each individual immune cell type
were standardized across all tumor and normal samples
in the investigated 19 tumor types (n = 8200). The TIS
was defined as the mean of the standardized values for
the following T cell subsets: CD8 T, T helper, T, T central
and effector memory, Th1, Th2, Th17, and Treg cells. T
gamma delta and T follicular helper cells were excluded
from TIS and IIS because public gene expression maps
from healthy tissues show that certain genes in the T
gamma delta signature (C1orf61, FEZ1) and the T fol-
licular helper signature (B3GAT1, HEY1, CHGB,
CDK5R1) are expressed at elevated levels in healthy
brain tissue [72], which is consistent with previous stud-
ies that reported the expression of some T cell specific
genes in healthy brain [31].
The overall immune infiltration score for a sample was

similarly defined as the mean of the standardized values
for macrophages, DC subsets (total, plasmacytoid, im-
mature, activated), B cells, cytotoxic cells, eosinophils,
mast cells, neutrophils, NK cell subsets (total, CD56
bright, CD56dim), and all T cell subsets used in the
computation of TIS.

Flow cytometry and RNA-Seq profiling for in vitro
validation of gene signatures
We obtained ccRCC patient specimens at MSKCC and
sorted tumor-associated macrophages (n = 4), NK CD16+

cells (n = 2), CD8+ T cells (n = 5), and CD4+ T cells (n = 3)

using the sorting markers CD45+CD3–CD56–CD14+,
CD45+CD3–CD56+CD16+, CD45+CD3+CD8+, and CD45
+CD3+CD4+, respectively. CD45– non-immune cells were
also sorted from one ccRCC specimen. The antibodies
used for cell sorting were: CD14 (HCD14; Biolegend
#325608), CD8a (HIT8a; Biolegend #300926), CD45 (2D1;
eBioscience 11-9459-42), CD4 (SK3; eBioscience 8048-
0047-025), CD16 (3G8; Biolegend 302008), CD56
(HCD56; Biolegend 318318), and CD3 (7D6; Invitrogen
MHCD0317).
RNA-Seq data for each sample were generated using

an Ion Proton system. FASTQ files were mapped to the
target genome using the rnaStar aligner [73] that maps
reads genomically and resolves reads across splice junc-
tions. We used the two-pass mapping method outlined
in Engström et al. [74] in which the reads are mapped
twice. The first mapping pass uses a list of known anno-
tated junctions from Ensemble. Novel junctions found in
the first pass are then added to the known junctions and
a second mapping pass is done. After mapping, we com-
puted the expression count matrix from the mapped
reads using HTSeq [75] and one of several possible gene
model databases. The raw count matrix generated by
HTSeq was then normalized using the R/Bioconductor
package DESeq [76].
This dataset is deposited in Gene Expression Omnibus

with accession number GSE84697.

Multiplex immunofluorescence staining and RNA-seq pro-
filing for in vitro validation of immune cell scores
Unstained pathologic slides of 10 renal tumors from pre-
viously untreated patients who underwent either radical
or partial nephrectomy for sporadic, resectable ccRCC
were obtained and reviewed by a genitourinary patholo-
gist. Paraffin-embedded tissue sections were de-waxed
with xylene and rehydrated by gradient ethanol solu-
tions. Antigen retrieval was then performed and the sec-
tions were subsequently blocked by bovine serum
albumin plus serum with the addition of mouse mono-
clonal anti-human CD8 (Dako, clone C8/144B, catalogue
#M7103 [77]), CD56 (Thermo scientific, clone 56C04,
catalogue #MS-1149-P1 [78]) and FOXP3 (Abcam, clone
236A/E7, catalogue #ab20034 [79]). The sections were
incubated with HRP-conjugated anti-mouse antibodies.
TSA plus kits (Perkin Elmer) were used according to the
manufacturer’s instructions. Finally, a Leica upright con-
focal microscope was used to capture images. In order
to quantify the degree of cellular infiltration, the individ-
ual positive cells for CD56, CD8, and FOXP3 were
counted in three representative regions of each tumor.
The ratio of CD56, CD8, and FOXP3 positive cells ver-
sus total cells (DAPI-stained) were determined.
RNA-Seq was performed for all samples and raw out-

put BAMs were converted back to FASTQ using
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PICARD Sam2Fastq. Maps were then mapped to the hu-
man genome using STAR aligner [73]. The genome used
was HG19 with junctions from ENSEMBL
(GRCh37.69_ENSEMBL) and a read overhang of 49.
Then any unmapped reads were mapped to HG19 using
BWA MEM (version 0.7.5a). The two mapped BAMs
were then merged and sorted and gene level counts were
computed using htseq-count (options -s y -m
intersection-strict) and the same gene models as used in
the mapping step [75]. This dataset was previously de-
posited in Gene Expression Omnibus with accession
number GSE74734 [80].

In silico validation of the ssGSEA immune cell scoring
methodology using simulated mixing proportions
In order to robustly validate the ability of ssGSEA to
quantify infiltrating immune cells from whole tumor
RNA-Seq, we generated realistic in silico mixtures of
tumor and infiltrating cell RNA expression. These mix-
tures emulate the gene expression profile obtained from
bulk RNA-Seq of impure tumor specimens. The steps of
this validation consisted of: (1) generating reference
mRNA expression vectors for tumor-infiltrating immune
cell populations; (2) creating noiseless or noisy linear
combinations of these “pure” expression vectors using
known mixing proportions; (3) running the ssGSEA
method on in silico mixtures to obtain the inferred im-
mune cell levels; (4) computing, for each cell type and at
each noise level, the Spearman correlation (point esti-
mate) between the known mixing proportions and the
inferred levels; and (5) generating an empirical null dis-
tribution for the Spearman correlations to obtain boot-
strap p values associated with the point estimates. We
elaborate on the details of these steps below.

(1)Generating reference mRNA expression vectors for
tumor-infiltrating immune cells
Few expression profiles of tumor-infiltrating im-
mune cell populations exist in the literature. Thus,
we utilized the four key immune cell populations
and one non-immune cell population (CD45–) we
sorted from ccRCC tumor specimens, performed
RNA-Seq, and generated novel reference mRNA
expression vectors defined as the mean of the
RNA-Seq readout for each gene across the samples
(4 macrophage, 2 NK CD16+, 5 CD8+ T, 3 CD4+

T samples, and 1 CD45– non-immune sample).
(2)Generating in silico mixtures with simulated mixing

proportions:
– The “clean” dataset

The cell types that we have a reference gene
expression vector for are macrophages, NK
cells, CD8+, and CD4+ T cells, and the non-
immune CD45– cells. An in silico mixture that

would realistically simulate the gene expression
profile of the tumor microenvironment can be
obtained by linearly combining the immune cell
reference expression vectors with that of non-
immune CD45– cells. We created 200 such in
silico mixture samples by randomly generating
mixing proportions from a Uniform(0,1) distri-
bution (point (5) below) and then computing
linear combinations of 20,032 genes in the ref-
erence expression vectors of the five cell types.
This dataset of 200 in silico samples and 20,032
genes constitutes the noiseless dataset that
will be referred to as the “clean” dataset from
here on.

– The “noisy” datasets
Since the RNA-Seq readout from a tumor spe-
cimen may include both biological and tech-
nical noise, we tested the performance of our
decomposition pipeline in “noisy” datasets as
well as in the “clean” dataset. We tested 10 dif-
ferent noise levels ranging from a slightly noisy
SNR of 10:1 to an extremely noisy setting of
SNR 1:1. For an S:1 noise level, we added
Gaussian noise to each gene in a “clean” sample
with mean 0 and standard deviation equal to
the mRNA readout of the gene divided by S.
Each one of the 10 noisy datasets again has 200
samples and 20,032 genes.

(3)Measuring the performance of the ssGSEA
methodology:
We implemented our ssGSEA decomposition
pipeline on both the “clean” and the noisy datasets
with the signatures for “macrophages,” “NK cells,”
“CD8+ T cells,” and “T helper cells.” The Bindea
et al. [14] signature set did not have a signature
for CD4+ T cells, but had an umbrella signature
for T helper cells that would be valid for all CD4+

T cells. We then computed the Spearman
correlation between the inferred levels (ssGSEA
scores) of these cell types in the 200 samples and
the known mixing proportions from the
simulations. Note that the decomposition on even
the “clean” dataset has an “impurity” component
as the expression from CD45– cells is also
integrated into the mixture samples. The
Spearman correlations were stable and above 0.6
for all four cell types in a long SNR range from 9:1
to 4:1 (Fig. 2a).
Comparing the four cell types, the correlation
values are the highest for NK cells (greater than
0.8 until SNR 4:1) and the lowest for CD4+ T cells.
The high number of polarization and activation
states in the sorted CD4+ T cells might be creating
challenges against obtaining a CD4+ reference
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expression profile that will universally be highly
robust. However, the deficiency in performance is
only in relation to the other three cell types; the
bootstrap p values for the CD4+ T cell Spearman
correlations are statistically significant (α = 0.05)
as explained below.

(4)Obtaining bootstrap p values for the observed
Spearman correlations:
Even though the point estimates for the Spearman
correlations as computed in point (2) above
remain high in noisy settings, this does not
provide information regarding the significance of
the point estimates. To this end, we simulated an
empirical null distribution for these correlation
values by generating 1000 random gene signatures
for each one of the four cell types (macrophages,
NK cells, CD8+ T cells, and T helper cells) for a
total of 4000 random signatures. The number of
genes in each random signature was equal to the
number of genes in the corresponding “real”
signature. Thus, each random signature for
macrophages, NK cells, CD8+ T cells, and T
helper cells, respectively, contained 33, 35, 37, and
24 genes randomly chosen from the 20,032 genes
in the RNA-Seq dataset.
We next ran ssGSEA on both the “clean” and the
noisy datasets 1000 times, where each run was
performed with a different set of random
signatures for the four cell types. Thus, each run
yielded 200 inferred values for a particular cell
type, which were then used to compute the
Spearman correlation with the true mixing
proportions. The 1000 Spearman correlations
obtained in this way formed the empirical null
distribution for that cell type. The p value for each
observed Spearman correlation was computed as
the fraction of correlations from random
signatures that were as large as or larger than
the observed correlation (Additional file 1:
Figure S23).

(5)The algorithm for generating mixing proportions:
Objective: Simulate five random numbers that
follow the Uniform(0,1) distribution and sum to 1.
Note: If X ~ U(0,1), then PDF(x) = 1 and CDF(x) = x
Step 1: Generate four random numbers from
CDF(x), i.e. U(0,1).
Step 2: Sort the four random numbers in
ascending fashion
Step 3: Compute the differences between
consecutive numbers (three difference values for
four random numbers)
Return: The smallest random number is the
first mixing proportion. The differences
between consecutive random numbers form

mixing proportions 2, 3, and 4. The last
mixing proportion is the difference between 1
and the largest random number.

Orthogonal validation of IIS with methylation-based
leukocyte fractions
We estimated the fraction of leukocytes using the as-
sumption that the beta value of a tumor sample i in a
DNA methylation probe k is a weighted arithmetic mean
of representative values from (1) leukocytes and (2) can-
cer cells. To make the estimation more robust, we
accounted only for those probes (the leukocyte methyla-
tion signature) where the leukocyte and tumor methyla-
tion difference was extreme. We used a similar approach
as described in Carter et al. [36]. All probes were ranked
by the difference between mean beta values in leukocyte
and tumor samples. The leukocyte methylation signature
consisted of the top 1000 probes Lh (leukocyte high
methylated probes) and the bottom 1000 probes Ll
(leukocyte low methylated probes).
Let Tik denote the beta value for a probe k in a tumor

sample i. Let Bk be a representative value of leukocyte
methylation and equal the average beta value of
leukocyte samples for each probe. Let Tk be a represen-
tative value of tumor methylation and equal the mini-
mum observed beta value across all tumor samples for
the Lh probes and the maximum for the Ll probes. Thus
Tk represents the methylation level of the theoretically
purest tumor sample. Then, the fraction fik of the
leukocyte component for sample i and probe k is given
by the following: Tik = Bkfik + Tk(1 - fik), hence fik = (Tik -
Tk)/(Bk - Tk). The leukocyte fraction fi for a sample is
then calculated as the mode (e.g. argmax of the dens-
ity) of the estimated distribution of all fik for the
leukocyte methylation signature. The reference DNA
methylation levels for leukocytes were derived by
Reinius et al. [81] from the DNA methylation profile
of peripheral blood mononuclear cells (PBMCs) in six
healthy donors.

Principal component test for Bindea et al. signatures
We performed an internal test for the immune cell gene
signatures on the three HG-U133A microarray datasets
[31–33] originally used by Bindea et al. [14] to derive
the signatures. The combined dataset had a total of 46
samples from 14 unique immune cell types. We first
performed background correction and quantile
normalization on the CEL files using GCRMA [34]. We
then performed two consecutive PCAs to investigate the
separation of (1) all 14 immune cell types, and (2) only
the T cell subpopulations among the set of 14 cell types.

(1)PC separation of all immune cell types: we reduced
the GCRMA-normalized dataset to the signature
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genes by mapping the Affymetrix U133A probeset
identifiers to HGNC symbols with the R biomaRt
package [82] and filtering out the zero variance pro-
besets. A total of 840 probesets remained, corre-
sponding to the 501 unique genes used in the
immune cell signatures. A PCA on the normalized
and reduced dataset revealed batch effects from the
three data sources (Additional file 1: Figure S3, top
panel). We corrected for batch effects using the
non-parametric option in ComBat [35] (Additional
file 1: Figure S3, bottom panel) and subsequently
performed PCA on the 46 samples to investigate the
separation of immune cell types by the first two PCs
(Fig. 1a).

(2)PC separation of six T cell subpopulations: we
reduced the GCRMA-normalized dataset to the
19 T cell subpopulation samples and only the T cell
related signature genes in a similar manner to point
(1). A total of 400 probesets remained, correspond-
ing to the 225 unique T cell subpopulation signature
genes. Batch effects were corrected using the non-
parametric option in ComBat [35] and PCA was
subsequently performed on the 19 samples to in-
vestigate the separation of T cell subpopulations
(Additional file 1: Figure S5).

Comparison between CIBERSORT and ssGSEA immune
scores
We obtained CIBERSORT values for the TCGA KIRC
cohort using the web tool https://cibersort.stanford.edu/ on
26 August 2016. The RNA-Seq dataset was provided as
input and the algorithm was run with 1000 permutations
(the highest option available). The quantile normalization
(QN) option was disabled as the RSEM pipeline for
TCGA RNA-Seq datasets included QN. Samples with
a global p value > 0.05 were removed and the remaining
194 samples were used in the comparison with ssGSEA.
We calculated the Pearson correlation between Bindea
et al. signatures and CIBERSORT values for all relevant
cell types (Additional file 2: Table S9).

Clonality assessment
The number of subclones for TCGA and SATO ccRCC
samples was calculated using the R package SciClone
(version 1.0.7) [60] with default parameters. For SATO
samples, the depth of coverage was assumed to be at
least 100×. Three of the SATO samples had an insuffi-
cient number of copy-number neutral variants.

HLA typing and HLA-binding neoepitope prediction
Whole-exome sequences for the TCGA KIRC tumors were
downloaded using cgquery (https://gdc.cancer.gov/). Whole-
exome sequences for the SATO dataset were downloaded
from the European Genome-phenome Archive (https://

www.ebi.ac.uk/ega/studies/EGAS00001000509). BAM files
containing whole-exome sequences from normal and/or
tumor samples were processed to obtain fastq files. Reads
that aligned to HLA-A, HLA-B, or HLA-C genes using
RazerS3 [83] (http://www.seqan.de/projects/razers/) were
passed as input to OptiType v1.0 [62] (https://github.com/
FRED-2/OptiType). Discrepancies in HLA typing were re-
solved by consensus or exclusion. A MAF files containing
missense mutations for each TCGA patient was obtained
from cBioPortal (http://www.cbioportal.org/). A MAF file
containing missense mutations for each SATO patient was
obtained from the publication [29]. Samtools (v
0.1.19) and snpEff (v3. 5C) were used to identify the
protein context surrounding each missense mutation
from a canonical set of human transcripts in (Hg
GRCh37.74). All 9 and 10-mers overlapping the mis-
sense mutations were extracted and NetMHCPan [84]
was used to predict their affinity to alleles of MHC-I.

Statistical methods
Hypothesis tests
Two-sided Mann–Whitney and Fisher’s exact tests were
performed with the R functions wilcox.test and
fisher.test, respectively. These tests are appropriate
as they are non-parametric (distribution-free). One-way
ANOVA tests were performed with the R function aov
for purity, stromal infiltration, and immune infiltration
scores. This test is appropriate as the variance of the
scores is similar between the immune infiltration clus-
ters and ssGSEA scores from gsva [71] are approxi-
mately normal. P values were adjusted for multiple
hypothesis testing using the R function p.adjust with
the “fdr” option.

Unsupervised clustering
The unsupervised clustering for tumor samples, immune
cell types, genes, and proteins was performed with hier-
archical clustering, Ward linkage, and Euclidean
distance.

Random forest prediction of immune infiltration class for
SATO patients
A random forest classifier was trained on the TCGA co-
hort of 415 patients with 10,000 trees and otherwise de-
fault values in the R package randomForest [85].
Training error on the TCGA cohort was 0%. This classi-
fier was applied to the ssGSEA scores of the SATO and
GERLINGER cohorts to obtain class predictions. The
random forest R object and the code to predict the class
of a new sample are available upon request.

Survival analysis
P values in Fig. 6b were obtained from univariate Cox
proportional-hazards regression models using the R
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package survival. Chi-square test statistics in
Kaplan–Meier curves (Fig. 6a, c, Additional file 1: Figure
S15c) were computed using log-rank tests.

Ratio of cell counts
ssGSEA-based infiltration scores do not follow a discrete
count distribution, but are unimodal and approximately
normal [71]. Therefore, ratios of cell counts cannot be
determined by simple division of the ssGSEA scores.
However, if a and b represent two cell counts, the log of
the ratio a/b is equal to log(a) – log(b). Thus, the differ-
ence of two ssGSEA scores represents a ratio of cell
counts. The CD8+ T/Treg and Th17/Th2 ratios in Fig. 6b
and c denote the numeric difference between the
ssGSEA scores for these cell types.
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Additional file 1: Figures S1–S25. Supplementary figures. (PDF 15387 kb)
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